Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.785
Filtrar
1.
Biofabrication ; 16(3)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38569494

RESUMO

The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.


Assuntos
Epiderme , Pele , Animais , Pele/metabolismo , Epiderme/química , Epiderme/metabolismo , Absorção Cutânea , Cafeína/farmacologia , Cafeína/análise , Cafeína/metabolismo , Perfusão
2.
PLoS One ; 19(4): e0299501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603673

RESUMO

Mathematical models of epidermal and dermal transport are essential for optimization and development of products for percutaneous delivery both for local and systemic indication and for evaluation of dermal exposure to chemicals for assessing their toxicity. These models often help directly by providing information on the rate of drug penetration through the skin and thus on the dermal or systemic concentration of drugs which is the base of their pharmacological effect. The simulations are also helpful in analyzing experimental data, reducing the number of experiments and translating the in vitro investigations to an in-vivo setting. In this study skin penetration of topically administered caffeine cream was investigated in a skin-on-a-chip microfluidic diffusion chamber at room temperature and at 32°C. Also the transdermal penetration of caffeine in healthy and diseased conditions was compared in mouse skins from intact, psoriatic and allergic animals. In the last experimental setup dexamethasone, indomethacin, piroxicam and diclofenac were examined as a cream formulation for absorption across the dermal barrier. All the measured data were used for making mathematical simulation in a three-compartmental model. The calculated and measured results showed a good match, which findings indicate that our mathematical model might be applied for prediction of drug delivery through the skin under different circumstances and for various drugs in the novel, miniaturized diffusion chamber.


Assuntos
Cafeína , Absorção Cutânea , Animais , Camundongos , Cafeína/farmacologia , Composição de Medicamentos , Microfluídica , Administração Cutânea , Pele/metabolismo , Modelos Teóricos
3.
AAPS PharmSciTech ; 25(4): 72, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575745

RESUMO

Atopic dermatitis is a skin condition characterized by lichenification (thickening and increased skin marking), eczematous lesions, dry skin, itching, and pruritus. Eugenol is an aromatic polyphenolic compound that has attracted the attention of researchers due to its anti-inflammatory, anti-oxidant, and anti-cancer properties. The primary goal of the present study was to develop and evaluate eugenol-loaded transethosomes for the treatment of AD. Eugenol-loaded transethosomes were formulated using the ethanol injection method and subsequently subjected to particle size analysis, zeta potential, entrapment efficiency, deformability index, and HRTEM analysis. Transethosomal gel was prepared by direct-dispersion method by using Carbopol 940®. Results showed transethosomes to be lipid bilayer structures with acceptable size, and high entrapment efficiency. Transethosomal formulation showed shear-thinning behavior. Eugenol-loaded transethosomal gel was significantly able to enhance the retention of the drug in the skin. Transethosomal gel was significantly able to reduce Ear thickness, DLC, TLC, and IL-6 levels in mice model of AD. These results indicate that the eugenol-loaded transethosomal gel could be a promising carrier for the topical administration of eugenol for the treatment of AD.


Assuntos
Dermatite Atópica , Eugenol , Animais , Camundongos , Eugenol/farmacologia , Absorção Cutânea , Administração Cutânea , Dermatite Atópica/tratamento farmacológico , Portadores de Fármacos/química , Pele/metabolismo , Antioxidantes/metabolismo
4.
Int J Biol Macromol ; 265(Pt 1): 130641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460623

RESUMO

Due to its involvement in skin maintenance and repair, topical administration of recombinant human growth hormone (rhGH) is an interesting strategy for therapeutic purposes. We have formulated and characterized a topical rhGH-loaded liposomal formulation (rhGH-Lip) and evaluated its safety, biological activity, and preventive role against UVB-induced skin damage. The rhGH-Lip had an average size and zeta potential of 63 nm and -33 mV, respectively, with 70 % encapsulation efficiency. The formulation was stable at 4 °C for at least one year. The SDS-PAGE and circular dichroism results showed no structural alterations in rhGH upon encapsulation. In vitro, studies in HaCaT, HFFF-2, and Ba/F3-rhGHR cell lines confirmed the safety and biological activity of rhGH-Lip. Franz diffusion cell study showed increased rhGH skin permeation compared to free rhGH. Animal studies in nude mice showed that liposomal rhGH prevented UVB-induced epidermal hyperplasia, angiogenesis, wrinkle formation, and collagen loss, as well as improving skin moisture. The results of this study show that rhGH-Lip is a stable, safe, and effective skin delivery system and has potential as an anti-wrinkle formulation for topical application. This study also provides a new method for the topical delivery of proteins and merits further investigation.


Assuntos
Hormônio do Crescimento Humano , Camundongos , Animais , Humanos , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Camundongos Nus , Pele/metabolismo , Lipossomos/metabolismo , Absorção Cutânea
5.
Int J Pharm ; 655: 124071, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554738

RESUMO

In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.


Assuntos
Parafina , Absorção Cutânea , Animais , Suínos , Recém-Nascido , Humanos , Parafina/metabolismo , Membranas Artificiais , Pele/metabolismo , Administração Cutânea , Preparações Farmacêuticas/metabolismo
6.
Chem Pharm Bull (Tokyo) ; 72(3): 319-323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508724

RESUMO

Auraptene (Aur) is a naturally occurring monoterpene coumarin ether that exhibits numerous therapeutic properties. Its high lipophilicity and low skin penetration, however, limit its potential application for local and transdermal delivery. Biocompatible non-ionic sugar esters (SEs) possess beneficial properties for the development of transdermal formulations in delivering pharmaceutically challenging molecules such as graphene and Aur. In the present study, we conducted a series of experiments to demonstrate the effect of several previously unstudied SEs on the skin permeation and distribution of Aur by preparing gel- and dispersion-type formulations. Skin permeation and deposition experiments were conducted using a Franz diffusion cell with rat skin as the membrane. The dispersion-type formulations prepared using SEs had higher entrapment efficiency, as well as better skin permeation and retention profiles. The dispersion-type formulation containing sucrose palmitate (sSP) exhibited the highest skin permeation over 8 h. Notably, the enhancement effects on Aur concentration in full-thickness skin after the application of the dispersion-type formulation was higher than those of the control formulation. These results indicated that the prepared formulation has potential for use in the transdermal delivery of Aur in pharmaceutical and cosmetic products.


Assuntos
Absorção Cutânea , Tensoativos , Ratos , Animais , Açúcares , Ésteres , Administração Cutânea , Cumarínicos
7.
J Microencapsul ; 41(3): 157-169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451031

RESUMO

OBJECTIVE: To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS: SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS: The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION: SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.


Assuntos
Morfinanos , Nanopartículas , Absorção Cutânea , Portadores de Fármacos/química , Administração Cutânea , Pele/metabolismo , Nanopartículas/química , Lipídeos/química , Tamanho da Partícula
8.
J Microencapsul ; 41(3): 204-225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456667

RESUMO

Ethosomes, which are liposomes like structures, mainly composed primarily of ethanol, have attracted considerable attention due to their potential to enhance the drug permeation via skin. The article discusses the formulation and preparation methods of ethosomes, offering insights into the various factors that influence their size, shape, and stability. Moreover, it explores the techniques used to assess the physicochemical properties of ethosomes and their impact on drug delivery effectiveness. The article also elucidates the mechanism by which ethosomes enhance skin permeation, emphasising their ability to modify the lipid structure and fluidity of the stratum corneum. Additionally, the review investigates the applications of ethosomes in diverse drug delivery scenarios, including the delivery of small molecules, peptides, and phytoconstituents. It highlights the potential of ethosomes to improve drug bioavailability, extend drug release, and achieve targeted delivery to specific skin layers or underlying tissues.


Assuntos
Absorção Cutânea , Pele , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Portadores de Fármacos/química
9.
Int J Pharm ; 654: 123992, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479485

RESUMO

Linagliptin is a dipeptidyl peptidase-4 inhibitor used for the management of type-2 diabetes. US FDA-approved products are available exclusively as oral tablets. The inherent drawbacks of the oral administration route necessitate exploring delivery strategies via other routes. In this study, we investigated the feasibility of transdermal administration of linagliptin through various approaches. We compared chemical penetration enhancers (oleic acid, oleyl alcohol, and isopropyl myristate) and physical enhancement techniques (iontophoresis, sonophoresis, microneedles, laser, and microdermabrasion) to understand their potential to improve transdermal delivery of linagliptin. To our knowledge, this is the first reported comparison of chemical and physical enhancement techniques for the transdermal delivery of a moderately lipophilic molecule. All physical enhancement techniques caused a significant reduction in the transepithelial electrical resistance of the skin samples. Disruption of the skin's structure post-treatment with physical enhancement techniques was further confirmed using characterization techniques such as dye binding, histology, and confocal microscopy. In vitro permeation testing (IVPT) demonstrated that the passive delivery of linagliptin across the skin was < 5 µg/sq.cm. Two penetration enhancers - oleic acid (93.39 ± 8.34 µg/sq.cm.) and oleyl alcohol (424.73 ± 42.86 µg/sq.cm.), and three physical techniques - iontophoresis (53.05 ± 0.79 µg/sq.cm.), sonophoresis (141.13 ± 34.22 µg/sq.cm.), and laser (555.11 ± 78.97 µg/sq.cm.) exceeded the desired target delivery for therapeutic effect. This study established that linagliptin is an excellent candidate for transdermal delivery and thoroughly compared chemical penetration and physical transdermal delivery strategies.


Assuntos
Álcoois Graxos , Linagliptina , Absorção Cutânea , Administração Cutânea , Linagliptina/metabolismo , Ácido Oleico/metabolismo , Pele/metabolismo , Iontoforese/métodos , Sistemas de Liberação de Medicamentos/métodos
10.
J Hazard Mater ; 468: 133800, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368688

RESUMO

The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.


Assuntos
Nanopartículas , Humanos , Nanopartículas/toxicidade , Nanopartículas/química , Membrana Celular/metabolismo , Absorção Cutânea , Tecnologia
11.
Skin Res Technol ; 30(3): e13589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396354

RESUMO

BACKGROUND: Ketoprofen is a nonsteroidal anti-inflammatory drug used for the treatment of acute and chronic pain associated with inflammatory conditions. This study aims to evaluate the in vitro percutaneous absorption of ketoprofen 10% formulated in proprietary anhydrous and aqueous gels using the Franz skin finite dose model. MATERIALS AND METHODS: The anhydrous gel was initially characterized for cytotoxicity using EpiDerm skin tissue model by cell proliferation assay and Western blot analysis. The Ultra Performance Liquid Chromatography method for measuring ketoprofen was validated and the stability of ketoprofen 10% in the anhydrous gel formulation was evaluated at 5°C and 25°C for 181 days. The percutaneous absorption of ketoprofen was determined using donated human skin. The tissue sections were mounted within Franz diffusion cells. A variable finite dose of each ketoprofen formulation in either anhydrous or aqueous gel was applied to the skin sections and receptor solutions were collected at various time points. RESULTS: Cell proliferation assay showed minimal cell death when EpiDerm skin tissue was exposed to the anhydrous gel for 24 h; the levels of protein markers of cell proliferation were not affected after 17-h exposure. Ketoprofen was stable in the anhydrous gel when stored at 5°C and 25°C. When compounded in the anhydrous and aqueous gels, ketoprofen had mean flux rate of 2.22 and 2.50 µg/cm2 /h, respectively, after 48 h. The drug was distributed to the epidermis and dermis sections of the skin. Both the anhydrous and aqueous gels facilitated the percutaneous absorption of ketoprofen without statistically significant differences. CONCLUSION: The anhydrous gel can be used as a base to facilitate the transdermal delivery of ketoprofen. Although the anhydrous and aqueous gels can deliver a similar amount of ketoprofen, the anhydrous gel (water activity below 0.6) allows for extended default beyond-use-date of compounding preparations.


Assuntos
Cetoprofeno , Humanos , Cetoprofeno/química , Cetoprofeno/metabolismo , Absorção Cutânea , Pele/metabolismo , Anti-Inflamatórios não Esteroides , Administração Cutânea , Géis , Água/metabolismo
12.
Eur J Drug Metab Pharmacokinet ; 49(2): 219-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332426

RESUMO

BACKGROUND AND OBJECTIVE: Topical clindamycin formulations are widely used in clinical practice, but poor bioavailability and restricted skin penetration considerably limit their therapeutic efficacy. Penetration enhancement represents a promising and rational strategy to overcome the drawbacks of conventional topical pharmaceutical formulations. We aim to assess the influence of cholic acid (CA) and deoxycholic acid (DCA) on the permeability of clindamycin hydrochloride by performing the in vitro skin parallel artificial membrane permeability assay (skin-PAMPA) at two relevant pH values (5.5 and 6.5) and the interactions of tested substances with skin ATP-binding cassette (ABC) transporters in silico. METHODS: After the incubation period, the clindamycin hydrochloride concentrations in both compartments were determined spectrophotometrically, and the apparent permeability coefficients (Papp) were calculated. Vienna LiverTox web service was used to predict the interactions of clindamycin and bile acids with potential drug transporters located in human skin. RESULTS: Both CA and DCA at the highest studied concentration of 100 µM in the tested solutions increased the skin-PAMPA membrane permeability of clindamycin hydrochloride. This effect was more pronounced for CA and at a higher studied pH value of 6.5, which is characteristic of most dermatological indications treated with topical clindamycin preparations. Clindamycin transport may also be mediated by ABC transporters located in skin and facilitated in the presence of bile acids. CONCLUSIONS: The results of this study provide a solid foundation for further research directed at the improvement of topical formulations using bile acids as penetration-enhancing excipients, as well as the therapeutic efficacy of clindamycin hydrochloride.


Assuntos
Ácidos e Sais Biliares , Clindamicina , Humanos , Clindamicina/farmacologia , Clindamicina/metabolismo , Ácidos e Sais Biliares/metabolismo , Pele/metabolismo , Absorção Cutânea , Ácido Cólico , Permeabilidade
13.
Pharm Res ; 41(3): 567-576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351229

RESUMO

PURPOSE: This study investigates in silico the contribution of the hair follicle to the overall dermal permeability of small molecules, as published experimental work provides inconclusive information on whether the follicular route favours the permeation of hydrophobic or hydrophilic permeants. METHOD: A study is conducted varying physico-chemical parameters of permeants such as lipophilicity, molecular weight and protein binding. The simulated data is compared to published experimental data to discuss how those properties can modulate the contribution of the hair follicle to the overall dermal permeation. RESULTS: The results indicate that the contribution of the follicular route to dermal permeation can range from negligible to notable depending on the combination of lipophilic/hydrophilic properties of the substance filling the follicular route and the permeant. CONCLUSION: Characterisation of the substance filling the follicular route is required for analysing the experimental data of dermal permeation of small molecules, as changes between in vivo and in vitro due to handling of samples and cessation of vital functions can modify the contribution of the follicular route to overall dermal permeation, hence hindering data interpretation.


Assuntos
Folículo Piloso , Absorção Cutânea , Folículo Piloso/metabolismo , Permeabilidade , Interações Hidrofóbicas e Hidrofílicas , Pele/metabolismo
14.
Adv Drug Deliv Rev ; 207: 115197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342240

RESUMO

Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.


Assuntos
Absorção Cutânea , Neoplasias Cutâneas , Humanos , Administração Tópica , Nanotecnologia , Neoplasias Cutâneas/tratamento farmacológico , Portadores de Fármacos/metabolismo , Pele/metabolismo
15.
Sci Data ; 11(1): 224, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383523

RESUMO

The cutaneous absorption parameters of xenobiotics are crucial for the development of drugs and cosmetics, as well as for assessing environmental and occupational chemical risks. Despite the great variability in the design of experimental conditions due to uncertain international guidelines, datasets like HuskinDB have been created to report skin absorption endpoints. This review updates available skin permeability data by rigorously compiling research published between 2012 and 2021. Inclusion and exclusion criteria have been selected to build the most harmonized and reusable dataset possible. The Generative Topographic Mapping method was applied to the present dataset and compared to HuskinDB to monitor the progress in skin permeability research and locate chemotypes of particular concern. The open-source dataset (SkinPiX) includes steady-state flux, maximum flux, lag time and permeability coefficient results for the substances tested, as well as relevant information on experimental parameters that can impact the data. It can be used to extract subsets of data for comparisons and to build predictive models.


Assuntos
Absorção Cutânea , Pele , Xenobióticos , Permeabilidade , Pele/metabolismo , Xenobióticos/metabolismo , Conjuntos de Dados como Assunto , Humanos
16.
AAPS PharmSciTech ; 25(3): 46, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413430

RESUMO

Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.


Assuntos
Absorção Cutânea , Pele , Humanos , Pele/metabolismo , Administração Cutânea , Tecnologia Farmacêutica , Microdiálise/métodos
17.
AAPS PharmSciTech ; 25(3): 51, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424412

RESUMO

The term cosmetics refers to any substances or products intended for external application on the skin with the aim of protection and better appearance of the skin surface. The skin delivery system promotes the controlled and targeted delivery of active ingredients. The development of this system has been driven by challenges encountered with conventional cosmeceuticals, including low skin retention of active components, limited percutaneous penetration, poor water dispersion of insoluble active ingredients, and instability of effective components. The aim is to create cosmeceuticals that can effectively overcome these issues. This review focuses on various nanocarriers used in cosmeceuticals currently and their applications in skin care, hair care, oral care, and more. The importance of nanotechnology in the sphere of research and development is growing. It provides solutions to various problems faced by conventional technologies, methods, and product formulations thus taking hold of the cosmetic industry as well. Nowadays, consumers are investing in cosmetics only for better appearance thus problems like wrinkles, ageing, hair loss, and dandruff requires to be answered proficiently. Nanocarriers not only enhance the efficacy of cosmeceutical products, providing better and longer-lasting effects, but they also contribute to the improved aesthetic appearance of the products. This dual benefit not only enhances the final quality and efficacy of the product but also increases consumer satisfaction. Additionally, nanocarriers offer protection against UV rays, further adding to the overall benefits of the cosmeceutical product. Figure 1 represents various advantages of nanocarriers used in cosmeceuticals. Nanotechnology is also gaining importance due to their high penetration of actives in the deeper layers of skin. It can be said that nanotechnology is taking over all the drawbacks of the traditional products. Thus, nanocarriers discussed in this review are used in nanotechnology to deliver the active ingredient of the cosmeceutical product to the desired site.


Assuntos
Cosmecêuticos , Cosméticos , Humanos , Autocuidado , Pele , Absorção Cutânea
18.
Eur J Pharm Sci ; 195: 106726, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354986

RESUMO

EMA and FDA are upgrading guidelines on assessing the quality and the equivalence of topically applied drug products for developing copies of originator products and supporting post-marketing variations. For topical products having remarkably similar composition, both EMA and FDA accept the equivalence on the bases of the comparison of rheological properties and in vitro drug release constant (k) and skin permeation flux (J) values, instead of clinical studies. This work aims to evaluate the feasibility to expand this approach to variations of the composition of complex semi-solid preparations. Ibuprofen (IB) creams at two different strengths (i.e., 1 % and 10 %) were used as a model formulation. Two formulative changes were performed: (a) the addition of the humectant to simulate a minor post-marketing variation; (b) the substitution of the emulsifying system to simulate a major one. These variations impacted only in 1 % IB formulations where both the equivalences of rheological data and J-values failed. At the highest concentration, the presence of IB crystals broke down the differences in rheological patterns and lead the IB thermodynamic activity at the maximum figuring out an overlapping of the J-values. Such data suggest the combination of these studies, which are thought mainly for the development of copies, could be also applied to the management of post-marketing variations that involve product composition.


Assuntos
Absorção Cutânea , Pele , Pele/metabolismo , Ibuprofeno/metabolismo , Termodinâmica , Reologia
19.
J Microencapsul ; 41(2): 127-139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38410926

RESUMO

Aim of the current study is to develop a microemulsion gel for transdermal delivery of tapentadol hydrochloride. Microemulsion was developed using phase diagram and subjected to assay, globule size, PDI, zeta potential, TEM and in vitro drug release studies. The optimized microemulsion was converted into gel using carbopol 934 NF and evaluated for viscosity, spreadability, in vitro, ex vivo, FTIR, DSC, stability and skin irritation studies. The mean globule size, PDI, zeta potential and in vitro drug release of microemulsion were found 247.3 nm, 0.298, -17.6 mV and 98.42% respectively. In vitro and ex vivo drug release of gel was found 92.2% and 88.6% in 24 h. Viscosity and spreadability results indicated ease of application and no incompatibility was observed from FTIR studies. The skin irritation studies showed absence of erythema. Key findings from the current research concluded that microemulsion gel was suitable for effective transdermal delivery.


Assuntos
Inflamação , Absorção Cutânea , Humanos , Tapentadol , Géis , Administração Cutânea , Liberação Controlada de Fármacos
20.
Skin Res Technol ; 30(2): e13610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38352988

RESUMO

BACKGROUND: Permeation-enhancing compounding bases are aimed to facilitate the penetration of the active pharmaceutical ingredients (APIs) across the skin barrier. OBJECTIVES: The purpose of this study was to evaluate the percutaneous absorption of radiolabeled human insulin (14 C-isototpe) when incorporated in a proprietary phospholipid base designed to deliver APIs with high molecular weights (HMW). The aim was not to claim the transdermal delivery of insulin with potential therapeutic applications in diabetes but, instead, to evaluate the ability of the compounding phospholipid base to deliver HMW drugs. METHODS: The percutaneous absorption of 14 C-insulin was determined using human torso skin and the Franz skin finite dose model. Two topical test formulations were prepared for in vitro evaluation: insulin 1% in phospholipid base (standard) and insulin 1% in phospholipid base HMW. The rate of percutaneous absorption (mean flux) and the distribution of 14 C-insulin through the skin were evaluated for both topical test formulations. A two-way ANOVA was used to determine statistical differences. RESULTS: The 14 C-insulin was distributed into the stratum corneum, epidermis and dermis. Mean flux values showed a rapid penetration upon application and the maximum flux was achieved at 30 min, followed by a slow decline. Subsequently, a slower decline was observed for the topical test formulation including the phospholipid base HMW. CONCLUSION: The phospholipid base HMW facilitates the percutaneous absorption of HMW drugs across human cadaver skin and, therefore, it may potentially be a useful option for compounding pharmacists and practitioners when considering the skin for the percutaneous delivery of large drugs.


Assuntos
Insulinas , Absorção Cutânea , Humanos , Fosfolipídeos/metabolismo , Preparações Farmacêuticas/metabolismo , Peso Molecular , Pele/metabolismo , Administração Cutânea , Insulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...